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I. INTRODUCTION 

I n  1932 Car ter r11 used the induced emf formulat ion and a s inu-  

H.E. King[2] extended these r e s u l t s  
so ida l  cu r ren t  d i s t r i b u t i o n  t o  der ive expressions f o r  the mutual imped- 
ance between half-wave dipoles. 
i n  1957 t o  p a r a l l e l  d ipo les i n  echelon w i t h  a r b i t r a r y  w i r e  lengths. 
Baker and LaGrone[3] employed nuner ica l  i n t e g r a t i o n  f o r  skew dipoles. 

These two-segment s inusoida l  so lu t ions  have been usefu l  f o r  
coupled d ipo les  w i t h  lengths up t o  about 0.5~. I n  t h i s  range, the  
cu r ren t  d i s t r i b u t i o n  on each th in -w i re  antenna i s  i n  most cases n o t  
g r e a t l y  d is tu rbed by the other.  More soph is t i ca ted  techniques are 
required, however, f o r  longer  antennas and f o r  more complex w i re  con- 
f igura t ions .  One approach i s  t o  reduce the  i n t e g r a l  equat ion t o  a 
system o f  simultaneous l i n e a r  equations. The unknown constants i n  
these equations are usua l l y  samples o f  the  cur ren t  f unc t i on  I(&) o r  
the c o e f f i c i e n t s  i n  a modal expansion f o r  the cu r ren t  d i s t r i b u t i o n .  

I n  1967 Yeh and Mei[4] employed such techniques t o  analyze the 
conica l  +p i  r a l  antenna. 
were developed by Tanner and Andreasen[5], M i l l e r  and Morton[6], Chao 
and S t ra i t r71 ,  and Richmond[8,9,10,11,12]. I n  References 4, 5 and 6 
the cur ren t  d i s t r i b u t i o n  on each w i re  segment has the form I = A + B 
cos ka + C s i n  ka. Reference 7 uses a p iecewise- l inear  expansion. 
References 8 through 12 use a piecewise-sinusoidal  expansion w i t h  
I = A cos ka + B s i n  ka. Others who have employed the piecewise- 
s inuso ida l  expansion inc lude Bu t le r [ l 3 ]  and Imbr ia le  and Ingersonr141. 

Programs f o r  a r b i t r a r y  th in -w i  r e  conf igura t jons  

This paper presents the electromagnet ic theory f o r  th in -w i  r e  
antennas and scat terers .  The ambient medium i s  considered t o  be i s o -  
t rop i c ,  l i n e a r  and homogeneous. The ana lys is  i s  performed i n  the 
frequency domain, and the generator o r  i n c i d e n t  wave may have a r e a l  o r  
complex frequency. The s o l u t i o n  s a t i s f i e s  K i r chho f f ' s  cu r ren t  law on 
the w i re  s t ruc tu re ,  and has favorable p roper t ies  o f  convergence and 
computational e f f i c i ency .  The computer programs w i l l  be presented 
i n  a f u t u r e  repor t .  

With no s i g n i f i c a n t  loss o f  genera l i t y ,  the w i re  s t r u c t u r e  i s  
considered t o  be a genera l ized polygon assembled from s t r a i g h t  w i re  
segments. The fo rmula t ion  and the program have been tes ted  ex tens ive ly  
i n  r a d i a t i o n  and s c a t t e r i n g  problems w i t h  var ious dipoles,  loops, arrays 
and w i r e - g r i d  models o f  p la tes,  spheres, cones, a i r c r a f t  and ships. 
Although the a i r - e a r t h  o r  a i r -water  i n t e r f a c e  i s  n o t  considered, the 
theory and program are usefu l  i n  many s i t u a t i o n s  i n v o l v i n g  bu r ied  o r  
submerged antennas and scat terers .  



A piecewise-sinusoidal  expansion i s  used f o r  the cur ren t  d i s t r i -  
bution. The m a t r i x  equat ion Z I = V i s  generated by en forc ing  reac t ion  
t e s t s  w i t h  a s e t  o f  s inusoida l  d ipo les loca ted  i n  the i n t e r i o r  reg ion 
o f  the wire. Since the t e s t  d ipo les have the same cur ren t  d i s t r i b u t i o n  
as the expansion modes, t h i s  may be regarded as an a p p l i c a t i o n  o f  
Galerkin 's method[l5]. However, the phys ica l  ideas o f  Rumsey's reac t ion  
concept[ l6] were more i n s p i r a t i o n a l  i n  t h i s  development than the mathe- 
mat ica l  ideas o f  the moment method. 

On each th in -w i re  s t ruc tu re ,  we def ine a s e t  o f  terminals  o r  
current-sampling points.  Terminals are def ined a t  each corner o r  bend- 
i n g  point ,  a t  each j u n c t i o n  where several s t r a i g h t  wires i n t e r s e c t ,  and 
a t  the w i re  endpoints. 
much greater  than x/4. 
d e f i n i n g  a d d i t i o n a l  sampling points.  

With several terminals  def ined i n  t h i s  manner, the w i re  s t r u c t u r e  
i s  a m u l t i p o r t  system. The elements i n  the open-c i rcu i t  impedance m a t r i x  
are ca lcu la ted  by numerical i n t e g r a t i o n  when appropr iate,  o r  by closed- 
form expressions i n  terms o f  exponential i n t e g r a l s .  The impedance m a t r i x  
i s  i n v e r t e d  t o  o b t a i n  the s h o r t - c i r c u i t  admittance matr ix.  

For accuracy, no segment should have a length  
Thus, a long segment may be subdiv ided by 

The s inusoida l  reac t ion  formulat ion was developed e a r l i e r  f o r  w i r e  
s t ruc tu res  i n  f r e e  space. 
medi un w i t h  complex frequency i s  based on electromagnet ic s i m i l i t u d e  
and a n a l y t i c  cont inuat ion.  

The genera l i za t ion  t o  wi res i n  a conducting 

The nex t  sec t ion  presents the reac t ion  i n t e g r a l  equat ion f o r  t h i n  
wires. The remaining t e x t  def ines the s inusoida l  expansion and t e s t i n g  
funct ions and develops the theory f o r  w i re  s t ruc tu res  w i t h  lumped load- 
i n g  and f i n i t e  conducti  v i  ty. The forward-scat ter i  ng theorem i s  con- 
s idered f o r  a t a r g e t  i n  a conducting medium, and numerical r e s u l t s  are 
d isp layed f o r  the echo area, r a d i a t i o n  e f f i c i e n c y  and impedance o f  a 
s t r a i g h t  w i re  i n  a conducting medium. As an example o f  a nonplanar 
s t r u c t u r e  w i t h  f o u r  s t r a i g h t  wires i n t e r s e c t i n g  a t  a junc t ion ,  we pre- 
sent  some poles o f  the admittance func t ion  o f  a " regu la r  quadripod", 
p l o t t e d  on the  complex gama plane. Appendices consider the near-zone 
and far-zone f i e l d s  o f  s inusoida l  l i n e  sources. 

11. THE REACTION INTEGRAL EQUATION 

L e t  S denote the c losed surface o f  the w i re  s t ruc tu re ,  and l e t  V 
denote the i n t e r i o r  vo lumetr ic  region. 
an ex terna l  source (tJi ?Ei) generates the f i e l d  (E,H). 
i n  the homogeneous medi um ( u , ~ )  wi thout  the wire, t h i s  source generates 
the i n c i d e n t  f i e l d  (E.,H.). The sca t te red  f i e l d  i s  def ined as fo l lows:  

I n  the presence o f  the wire,  
When r a d i a t i n g  

-1 -1 
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H = H - H -  - s -  -1 (2 1 

These f i e l d s  are considered t o  be time-harmonic w i t h  the same frequency. 
The time dependence eJwt o r  e s t  i s  suppressed. 

From the surface-equi valence theorem o f  Schel kunof f  [17], the 
i n t e r i o r  f i e l d  w i l l  vanish w i thout  d i s tu rb ing  the e x t e r i o r  f i e l d  (E,H) -- 
i f  we in t roduce the f o l l o w i n g  sur face-current  dens i t ies  

M = E x :  - s -  (4) 

on the surface S. 
t h i s  s i t ua t i on ,  we may replace the  w i re  s t ruc tu re  w i t h  homogeneous 
medium ( p , ~ )  wi thou t  d i s tu rb ing  the f i e l d  anywhere. When J and M 
r a d i a t e  i n  the homogeneous medium, they generate the f ield?E+,qYin 
the  e x t e r i o r  and (-Fi,-li) i n  the i n t e r i o r  region. 

V and consider i t s  reac t ion  w i t h  the o t h e r  sources. I f  the t e s t  source 
has e l e c t r i c  cu r ren t  dens i ty  J+,, and magnetic cur ren t  d e n t s i t y  $, 

(The u n i t  vector  fi i s  d i rec ted  outward on S.) I n  

Now l e t  us p lace a t e s t  source ( o r  probe) i n  the i n t e r i o r  reg ion 

(5 1 

I n  Eq. (5) (&&) denotes the f i e l d  generated by (&,&), and the i n t e -  
g ra l s  extend over the  surface o f  the t e s t  source. Equation (5 )  i s  one 
form o f  the reac t ion  i n t e g r a l  equation (RIE). 
w i t h  a s e t  o f  de l ta - func t ion  e l e c t r i c  t e s t  sources, the R I E  reduces t o  
the well-known e l e c t r i c  f i e l d  i n t e g r a l  equat ion (EFIE). I f  we enforce 
Eq. (5) w i t h  a s e t  o f  de l ta - func t ion  magnetic t e s t  sources, the R I E  
reduces t o  the well-known magnetic f i e l d  i n t e g r a l  equation (MFIE). Thus, 
the R I E  i s  more general than the EFIE o r  the MFIE. 
(5 )  s ta tes  t h a t  the i n t e r i o r  t e s t  source has zero reac t i on  w i t h  the o ther  
sources. 

I f  we enforce Eq. ( 5 )  

I n  o ther  words, Eq. 

From Eq. (5 )  and the r e c i p r o c i t y  theorem, we ob ta in  another form 
o f  the reac t ion  i n t e g r a l  equation: 

3 



M.*Hm)dv = 0 
-1 - 

m m  where ( E  - -  ,H ) i s  the f ie ld  of the tes t  source radiating in the homo- 
geneous medium. This reaction integral equat on was developed by 
Rumsey[16] i n  1954. For thin-wire problems, we shall employ Eq. (6)  
w i t h  electric tes t  sources. 

In the wire structure, l e t  each segment have a circular cylindrical 
surface. 
i t  i s  convenient toAdgflne a right-handed orthogonal coordinate 2ystem 
w i t h  u n i t  vectors ( n , + , a )  where n i s  the outward normal vector, R i s  
directed along the wire ax is  and 

A t  each p o i n t  on the conposite cylindrical surface of the wire, 

A A A  

( 7 )  $ = a x n  . 
Thus (n ,+ ,a )  correspond directly w i t h  the u n i t  vectors (G,;,;) usually 
employed i n  the ci rcular-cy1 indrical coordinate system. 

A * &  

To simplify the integral equation, we assume the wire radius "a" 
is much smaller t h a n  the wavelength A ,  and the wire length i s  much 
greater than the radius. Furthermore, we shall neglect the integrations 
over the f l a t  end surfaces of the wire, neglect the circumferential com- 
ponent J of the surface-current density, and consider the axial compo- 
nent J g  Po be independent of +. (For thick wires, a more detailed treat-  
m e n t  i s  essential for the +-dependent current modes and the integrations 
over the junction regions and the open ends of the wire. A more elaborate 
formulation may also be required i f  one wire passes w i t h i n  a few diameters 
of another, or i f  a wire i s  bent t o  form a small acute angle.) In view of 
these approximations the current density on the wire structure is  related 
t o  the current as follows: 

where R i s  a metric coordinate measuring position along the wire axis, 
and I ( R )  i s  the total current (conduction plus displacement). 

vanishes. 
On a perfectly conducting wire, the magnetic current density r?, 

If the wire has f in i te  conductivity, we take 

for the tangential e lectr ic  f ie ld  on S, where ZS is the surface imped- 
ance for exterior excitation. From Eqs. (4), (7), (8) and ( 9 ) ,  

4 



By virtue of Eqs. (8) and ( lo ) ,  Eq. (6)  reduces t o  

L 

0 
- i I ( a ) (  E! - Z Hm)da = Vm 

s 4 J  (11 1 

where L denotes the overall wire length and 

The sinusoidal reaction formulation for thin wires i s  based on the 
integral Equation (11). 
- Hm, Vw and Zs. 
function. 
i n g  sections define suitable t e s t  sources and expansion modes. 

In this equation the known quantities are Em, 
The current distribution I ( a )  i s  regarded as an unknown 

To permit a solution for the current d i s t r i b u t i o n ,  the follow- 

111. THE SINUSOIDAL TEST SOURCES 

For a test  source we choose a filamentary e lec t r ic  dipole w i t h  a 
sinusoidal current distribution. This i s  not a wire dipole, b u t  merely 
an e lectr ic  line source in the homogeneous medium. 
i s  probably the only f in i te  line source w i t h  simple closed-form express- 
ions for the near-zone fields. (See the Appendices.) Furthermore, the 
mutual impedance between two sinusoidal dipoles i s  available i n  terms 
of exponential integrals, and the piecewise-sinusoidal function i s  
evidently close t o  the natural current distribution on a perfectly con- 
ducting t h i n  wire. 

terminals a t  the vertex. 
sinusoidally t o  a maximum a t  the terminals. 
ampere, and the current distribution has a slope discontinuity a t  the 
termi nal s . 

The sinusoidal dipole 

These factors governed the choice of t e s t  sources. 

A typical t e s t  source i s  a V dipole w i t h  unequal arm lengths and 
The current is zero a t  the endpoints and rises 

The terminal current i s  one 

5 



Fig. 1. A l i n e a r  t e s t  d ipo le  and i t s  s inusoida l  cur ren t  
d i s t r i b u t i o n .  
w i t h  terminals  a t  z2. 

The endpoints are a t  z1 and z3  

For the l i n e a r  t e s t  d ipo le  i l l u s t r a t e d  i n  Fig. 1, the c u r r e n t  d is -  
t r i b u t i o n  i s  - I ( z )  = F(z) where 

P1 s i n h  y(z-zl) > P2 s i n h  y(z3-z) 
F(z )  = + - 

sinh  ydl s i n h  yd2 
(15) 

P ( z )  i s  a pulse func t ion  w i t h  u n i t  value f o r  21 < z < z2 and zero value 

vanishes elsewhere. 
The cur ren t  d i s t r i b u t i o n  on a V t e s t  d ipo le  i s  

i, P1 s inh  y(a-al) 
(16) - F(a) = s1nh Ydl s inh  yd2 

e 1 sewhere. The pulse func t ion  P2 has u n i t  value f o r  z2 < z < 23 and 
The segment lengths are d l  = z2 - z1 and d2 = z3 - z2. 

a2 P2 s inh  y ( a 3 - a )  
A 

+ 

In  Eqs. (15) and (16), y denotes the  complex propagation constant o f  
the homogeneous e x t e r i o r  medi um: 

It i s  on ly  w i t h  t h i s  value f o r  y t h a t  the s inusoida l  t e s t  sources have 
the advantages mentioned e a r l i e r .  

6 



The t e s t  d i p o l e  i s  l o c a t e d  i n  the i n t e r i o r  reg ion o f  the  w i re  
s t ructure.  To s i m p l i f y  the i n t e g r a t i o n s  i n  Eqs. (13) and (14), we place 
the t e s t  d ipo le  on the w i re  axis. 

A t y p i c a l  problem requi res n o t  j u s t  one b u t  several t e s t  d ipo les 
loca ted  a t  d i f f e r e n t  p o s i t i o n s  along the w i r e  ax is  t o  form an over lap- 
p i n g  array. When t e s t  d ipo le  m rad ia tes  i n  the homogeneous medium, i t  
generates the f i e l d  (Em,Hm). - 
as the t r u e  source. 
one. Thus, Eq. (11) represents a system o f  N simultaneous i n t e g r a l  
equations w i t h  m = 1,2,=.N. 
d ipo le  i n  the array t o  have the c o r r e c t  reac t ion  w i t h  the t r u e  source. 

Each t e s t  d ipo le  has the same frequency 
Using N t e s t  d ipoles,  Eq. (11) i s  enforced f o r  each 

I n  o t h e r  words, Eq. (11) requi res each t e s t  

I V .  THE SINUSOIDAL EXPANSION FUNCTIONS 

The c u r r e n t  d i s t r i b u t i o n  on the w i r e  s t r u c t u r e  i s  expanded i n  a 
f i n i t e  ser ies  as fo l lows:  

M 

where the normal ized expansion funct ions f n ( a )  are the same as the t e s t -  
d ipo le  c u r r e n t  d i s t r i b u t i o n s  i n  Eq. (16). Since each expansion func t ion  
extends over  j u s t  a two-segment p o r t i o n  o f  the w i r e  s t ruc tu re ,  these 
funct ions are subsect ional  bases. 
considered e i t h e r  as an expansion o r  an approximation, depending on the 
context. 
represent samples o f  the c u r r e n t  func t ion  I ( a ) .  
are s h o r t  i n  comparison w i t h  the wavelength, the s inusoida l  bases 
resembl e the t r i a n g u l a r  bases o f  the piecewi se-1 i near model. 

Figure 2 i l l u s t r a t e s  a c u r r e n t  d i s t r i b u t i o n  I(&), i t s  two-mode 
approximation I' ( a )  and the normal ized expansion funct ions F1 ( a )  and 
F ~ ( R ) .  
generators, 1 umped loads and w i r e  corners. The piecewise-sinusoidal  
expansion has slope d i s c o n t i n u i t i e s  a t  these appropr ia te l o c a t i o n s  and 
a lso a t  each in termediate sampling po in t .  
the ca lcu la ted  samples I n  w i l l  be accurate and the corresponding piece- 
wise-sinusoidal  c u r r e n t  d i s t r i b u t i o n  I' ( a )  w i l l  be s a t i s f a c t o r y  f o r  
f a r - f i e l d  ca lcu lat ions.  For near-zone f i e l d  analysis,  however, one 
may abandon the s inusoida l  i n t e r p o l a t i o n  and model the c u r r e n t  d i s t r i -  
bu t ion  I ( a )  w i t h  a smooth f u n c t i o n  f i t t i n g  the ca lcu la ted  samples. I n  
t h i s  process, one should 
generators, lumped loads o r  w i r e  corners. 

system o f  simultaneous l i n e a r  a lgebra ic  equations: 

Since N i s  f i n i t e ,  Eq. (18) may be 

I f  the w i re  segments 
I n  Eq. (18), the c o e f f i c i e n t s  I n  are complex constants which 

It may be noted t h a t  I ( & )  i s  a smooth f u n c t i o n  except a t  

With favorable circumstances, 

smooth o u t  the slope d i s c o n t i n u i t i e s  a t  the 

By i n s e r t i n g  Eq. (18) i n t o  Eq. (11), we o b t a i n  the f o l l o w i n g  

7 



In Eq. (20), the integral extends over the two segments i n  the range of 
the expansion mode Fn. 
as Z I = V where Z denotes the square impedance matrix, I i s  the current 
col urn and V i s  the voltage col urn. 

Equation (19) can be expressed i n  matrix form 

0 I 
I 

2 3 

Fig. 2. The expansion functions F l ( a )  and F 2 ( a ) ,  the current 
distribution I ( E )  and the two-mode approximation I '  ( a ) .  

V. THE IMPEDANCE MATRIX 

The elements i n  the open-circuit impedance matrix are denoted 
By convention, the f i r s t  and second subscripts indicate the row Z,,,,,. 

and column, respectively. 
t es t  dipole m and expansion mode n. 

Thus ,  hn denotes the mutual  impedance between 

a 



The expansion modes form an array of  overlapping tubular dipoles 
located on the wire surface. 
tri b u t i o n  o f  e lec t r ic  surface-current density and an associated magnetic 
surface-current density. 
posit ions as the expansion dipoles, the reciprocity theorem could be 
invoked t o  demonstrate the symnetry of the impedance matrix. Since the 
filamentary t e s t  dipoles differ  from the tubular expansion dipoles, our 
impedance matrix i s  n o t  precisely symnetric. 

Each tubular dipole has a sinusoidal dis- 

If the t e s t  dipoles had the same shapes and 

In practice, we regain symnetry by taking a short-cut i n  calculating 
the elements i n  the impedance matrix. From Eqs. (13), (14) and (20), 
hn i s  expressed as an integration over the composite circular-cy1 indrical 
surface of the tubular expansion dipole n. The short-cut i s  accomplished 
by approximating the surface integral w i t h  a line integral. Thus,  t o  
reduce computational costs, we approximate Zm by the m u t u a l  impedance 
between two filamentary V dipoles, one located on the wire axis and the 
other on the wire surface. For a straight wire, the mutual impedance 
i s  independent of  the circumferential posi t ion o f  the dipole located on 
the surface. 
quite sensitive t o  the circumferential position. Via numerical experi- 
ments, we have found a suitable position such that the circumferential 
integrations i n  Eqs. (13) and (14) are adequately approximated from a 
single sample of the integrand. 

For a bent wire, however, the mutual impedance i s  sometimes 

W i t h  the approximation mentioned above, the impedances 
given by classical induced emf theory[l,2,3]. The l ine integ% i n  
Eq. (20) i s  usually performed w i t h  numerical integration. When dipoles 
m and n are close together, however, a closed-form expression ( i n  terms 
of exponential integrals) is employed for  Z,. 

are 

V I .  LUMPED LOADS 

Suppose a lumped impedance Zw i s  inserted i n  the wire structure 
a t  each of the current sampling points. 
be active or  passive, identical or assorted. 

Thus,  a detailed analysis o f  a lumped load will involve a magnetic f r i b ,  
r i n g  or tube as i n  Section 8. 

In the simplest model, the delta gap, the lumped loads simply 
introduce a new term i n  Eq. (19) so the right-hand side becomes 
v, - ImZm. 

These l inear impedances may 
The current through the 

is  denoted by Im, and the voltage drop across the load i s  1, Z,,,. 
The load ef "p ec t  i s  the same as that of a voltage generator w i t h  voltage ImZ . 

Transposing the l a s t  term, we obtain 

N 
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W i t h  the delta-gap model, the matrix Tmn i s  the same as Zmn w i t h  the 
exception of the diagonal elements which are 

Thus, the effect  of lumped load ing  i s  accounted for simply by modifying 
the elements in the square impedance matrix. 
approximation i s  employed, the matrix Zmn will have the same symmetry 
properties as Z,. 

VII. WIRES WITH FINITE CONDUCTIVITY 

If the above delta-gap 

The surface impedance Zs will vanish unless the wire has f in i te  
conductivity. From Eq.  (20) , 

where 

A l t h o u g h  longitudinal inhomogeneities in the surface impedance and wire 
radius offer no difficult ies,  i t  is assumed i n  E q .  (24)  and hereafter 
t h a t  these parameters are independent of R. The integral in Eq.  (24) 
extends over the two wire segments i n  the range o f  expansion mode Fn. 
From Eq. (14) and Ampere's law, a suitable approximation i s  

where region (m,n)  i s  the wire surface shared by dipoles m and n. 
region covers two intersecting segments i f  m and n are equal. 
n differ,  the shared region covers a t  most one wire segment. 
onal element, m and n are equal and Eqs. (16) and (26) yield 

This 
If m and 

For a diag- 
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s i  nh ( 2ydl ) -2ydl s i  nh ( 2yd2 ) -2yd2 
+ 

sinh2 ydl sinh' yd2 
(27)  

where d l  and de are the lengths o f  the  two w i re  segments occupied by 
mode m. 
i f  modes m and n do n o t  share a segment. 
have terminals  a t  the same end o f  t h i s  segment ( l e n g t h  d), 

For an of f -d iagonal  element, a s u i t a b l e  approximation i s  Z b  = 0 
I f  they share one segment and 

I f  modes m and n share one segment and have terminals  a t  opposi te ends 
o f  t h i s  segment, 

(yd cosh yd - s inh  yd)Zs 

4 ~ y a  sinh2 yd  
Zk - - (29) 

If 
be i n s e r t e d  on the r ight -hand s ide  o f  Eqs. (28) o r  (29). 

Z,!,,,, w i l l  be symmetric. F rom Eq. (23) and the r e c i p r o c i t y  theorem, the 
m a t r i x  Zmn (and &,,, w i t h  lumped loading)  w i l l  a lso be symmetric i f  the 
t u b u l a r  expansion d ipo les are approximated by f i lamentary  d ipo les loca ted  
on the w i r e  surface. This symnetry a l l e v i a t e s  computational expenses and 
storage requirements. 

and 5 are a n t i p a r a l l e l  on the shared segment, a minus s i g n  must 

If Eq. (26)  i s  employed, i t  i s  obvious t h a t  the square mat r ix  

V I I I .  INSULATED WIRES 

For a w i r e  antenna i n  a conducting medium, the r a d i a t i o n  e f f i c i e n c y  
can o f t e n  be improved by i n s u l a t i n g  a l l  o r  p a r t  o f  the w i r e  f r o m  the 
medium. 
w i r e  surface. 
the d i e l e c t r i c  l a y e r  o r  she l l .  

This i s  accomplished w i t h  a t h i n  d i e l e c t r i c  l a y e r  coated on the 
This sec t ion  considers the electromagnet ic modeling o f  

Although the surface-impedance model i s  simple t o  program, there 
i s  some uncer ta in ty  regard ing i t s  adequacy i n  t h i s  appl icat ion.  
fore, l e t  us consider a r igorous a l t e r n a t i v e  model. 

There- 
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For simplicity, l e t  the dielectric shell have the same permeability 
as the ambient medium. From the volume equivalence theorem (Section 11 ) 
the dielectric shell may be replaced with ambient medium and an equivalent 
source w i t h  electric current density 

- J = ~ w ( E ~  - E )  E 

where E denotes the electr ic  field intensity in the shell and E? and E 

are the complex permittivities of the shell and the ambient medium 
respectively. 
of the dielectric shell. 

From Eq. (30), the current - J vanishes outside the region 

Let ( E , H )  -- denote the field generated by (gi,Ei) in the presence of 
the insulated wire. 
by ( L i y E i ) ,  (&?b) and J ,  radiating in the homogeneous medium. These 
sources, radiating in the homogeneous medium, generate a null f ield in 
the interior region o f  the wire. 
located on the surface of the wire and are related t o  the field (E,!). 

For the insulated wire, the reaction integral equation ( E q .  ( 6 ) )  
i s  modified by replacing ,Jj with ,Ji + J. The current J may be regarded 
as an additional source which plays muFh the same r o l e a s  the impressed 
source J i .  However, gi i s  considered t o  be a known source whereas 3 i s  
unknownaecause E i s  unknown. 
be regarded as a-dependent unknown function because i t  i s  sirnplyrelated 
t o  the current distribution on the wire. 

Outside the wire, this f ield may also be generated 

The surface currents (by%) are 

If the dielectric shell i s  thin, J may 

If the wire has large or perfect conductivity, the electr ic  f ie ld  
a t  the wire surface will be essentially in the radial direction, and Ep 
can be determined from the charge density on the wire surface. 
thin shell on a highly conducting wire, a suitable approximation for 
the f ie ld  i n  the shell i s  

For a 

where I '  denoted d I /da  -; I '  E =  (31 1 - ~ - I T ~ W E ~ P  

From Eqs. (30) and (31), 

For an insulated wire, each expansion mode h(a) has associated with i t  
a shell of radial electric current J. Thus, the mutual impedance Zm 
between the filamentary tes t  dipole-m and the tubular expansion dipole 
n has an additional term given by 
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where the i n t e g r a t i o n  extends through the d i e l e c t r i c  s h e l l  i n  the range 
o f  the expansion d ipo le  n. I n  d e r i v i n g  Eq. (33), the i n t e g r a t i o n  on 4 
was performed w i t h  the assumption t h a t  J and Em are independent o f  4. 
I n  i n t e g r a t i n g  on p, the l i m i t s  are a aKd b whech denote the i n n e r  and 
ou ter  r a d i i  o f  the d i e l e c t r i c  she l l .  

I n  the d i e l e c t r i c  she l l ,  the tes t -d ipo le  f i e l d  Em may be approxi- 
P mated by 

I n  Eq. (33) o r  (34), p denotes distance from the ax is  o f  d ipo le  n o r  m, 
respect ive ly .  Furthermore, the vector d i r e c t i o n  o f  the f i e 1  d component 
E: i n  Eq. (33) genera l l y  d i f f e r s  from t h a t  i n  Eq. (34) unless d ipo les 
m and n are coaxial .  I f  Eq. (34) i s  employed, Eq. (33) reduces t o  

where (m,n) denotes the region o f  
approximate r e s u l t  represented b.y 

FA(a) F,!,(e) da 
Jm,n 

a shared by d ipo les m and n. 
Eq. (35) y i e l d s  a mat r ix  AZ, which 

The 
. . . -  

i s '  symnetric even when some o f  the w i re  segments are insulated-'and others 
are bare. 

I n  the s inusoida l  reac t ion  formulat ion,  i n s u l a t i o n  i s  accounted 
f o r  e n t i r e l y  through a mod i f i ca t ion  o f  the square impedance m a t r i x  Z,. 
This m o d i f i c a t i o n  in f luences the cur ren t  d i s t r i b u t i o n ,  impedance, 
e f f i c i e n c y ,  f i e l d  pat terns and s c a t t e r i n g  proper t ies.  The p o l a r i z a t i o n  
c u r r e n t  J generates a h i g h l y  l o c a l i z e d  f i e l d  which may be neglected i n  
far-zone-f ie ld ca lcu lat ions.  

I X .  THE EX C I  TAT1 ON VOLTAGES 

From Eq. (12) and r e c i p r o c i t y ,  the e x c i t a t i o n  vol tages are given 

F * E .  da (36) -m -1 

where Ei denotes the i n c i d e n t  f i e l d  generated by 
the homogeneous medi um. The i n t e g r a t i o n  extends 
segments o f  t e s t  d ipo le  m. 

( J -  -1 '- M . )  r a d i a t i n g  i n  
over 80th arms o r  
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I f  the i n c i d e n t  f i e l d  i s  generated by a d i s t a n t  source w i t h  
spher ical  coordinates (ro,eo,+o), 

E. = 5 exp(y r e ;  ) - 0  (37) -, 
where E i s  a vector  constant, r̂ i s  a u n i t  vector  from the coordinate 
o r i g i n 3 0  the d i s t a n t  source, an8 r i s  the r a d i a l  vector  from the o r i g i n  
t o  the observat ion point .  F r o m  Eq?. (36) and (37), the e x c i t a t i o n  v o l t -  
ages induced by an i n c i d e n t  plane wave are 

Now consider the f i e l d  h e g e n e r a t e d  by t e s t  d ipo le  m when r a d i a t i n g  
i n  the homogeneous medium. 
a t  the d i s t a n t  p o i n t  (ro,eo,+o) t o  be 

Using the vector  p o t e n t i a l ,  we f i n d  the f i e l d  

where the r a d i a l  component i s  t o  be suppressed. From Eqs. (38) and (39), 

Equations (38) and (40) are usefu l  i n  plane-wave s c a t t e r i n g  problems. 
If the source ( J i  ,bji ) i s  near the w i re  s t ruc tu re ,  we have a near-zone 
s c a t t e r i n g  probTem and employ Eq. (36) 

A w i r e  s t r u c t u r e  i s  usua l ly  c a l l e d  a s c a t t e r e r  i f  the source (J i ,Mi )  - 
i s  loca ted  some distance away, and an antenna i f  the source i s  a t  tFe 
w i re  surface. I n  electromagnet ic theory, however, there i s  no funda- 
mental d i s t i n c t i o n  between the s c a t t e r i n g  problem and the antenna prob- 
lem. The antenna problem i s  merely an extreme example o f  near-zone 
sca t  t e r i  ng . 

I f  an antenna i s  f e d  w i t h  a p a r a l l e l - w i r e  t ransmission l i n e ,  the 
t ransmission l i n e  i s  p roper ly  considered t o  be p a r t  o f  the r a d i a t i n g  
system. I n  a d d i t i o n  t o  the TEM mode, higher-order modes w i l l  e x i s t  on 
the t ransmission l ine .  Thus, moment methods are employed t o  determine 
the c u r r e n t  d i s t r i b u t i o n  on the transmission l i n e  as w e l l  as on the 
antenna. I f  a w i re  antenna i s  f e d  through a coaxia l  cable, the source 
may be modeled as a magnetic surface-current densi ty  t4i on the aperture 
surface o f  the coaxial  feed. The shape o f  the source M i  i s  determined 
by the d e t a i l s  o f  the terminal  region. 
be modeled as a magnetic d isk  o r  a magnetic tube as i n d i c a t e d  by Ot to [ l8 ]  
i n  1968. 

Thus, a v o l t a g g  generator may 

Consider a w i re  antenna dr iven  by a vol tage generator V i  l oca ted  
a t  one o f  the c u r r e n t  sampling p o i n t s  ki. The generator vol tage vi i s  
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considered positive i f  i t  tends t o  force a current in the direction of 
the expansion mode Ei (a) .  
ages are 

I 

I F r o m  Eqs. (12)  and (36), the excitation volt- 

where the line integral extends over tes t  dipole m and the surface inte- 
gral extends over the magnetic source bli. 
approximated by a loop encircling the wire and Mi i s  uniform around the 
loop, then 

If the magnetic source i s  

-1 M . = - A  0 v i  

If the loop has small radius b y  Eq. (41) reduces t o  

A m  Vm = b vi f 0-fi  d0- 
i 

(43) 

If displacement currents are neglected, Eq. (43) and Ampere's law yield 

Vm = vi F ( a . )  
m i  (44) 

From Eq. (44) ,  a l l  the excitation voltages Vm vanish except one: Vi = Vi. 
Although this simple result i s  often adequate, the accuracy and conver- 
gence of the solution may be improved by modeling the source as a magnetic 
disk o r  tube (instead of a loop) and using Eq. (41).  
result in Eq. (44) may be regarded as the delta-gap model. 

The approximate 

Now consider a wire antenna fed w i t h  a coaxial cable w i t h  inner 
and outer radii a and b y  and l e t  the inner conductor extend t o  form pa r t  
of the antenna with radius a. 
ground plane, image theory may be employed. 
segments may have the same radius a. 
be considered t o  be p a r t  of the radiating system, and some of the segments 
of the wire antenna will have radius a and others will have radius b. 
In ei ther case, the source may be modeled as an annular disk of magnetic 
current w i t h  inner and outer radii a and b. 
density will n o t  be uniform over the disk, and a suitable approximation i s  

If the antenna i s  fed t h r o u g h  a large 
In this case, a l l  the wire 

Otherwise the coaxial cable must 

The magnetic surface current 

A 

-0 vi 
M .  = 
-1 p t ~  b a )  (45) 

where p denotes the radial distance from the axis of the disk and vi i s  
the TEM-mode voltage in the coaxial cable. 
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From Eqs. (41) and (45), i t  i s  noted t h a t  the e x c i t a t i o n  voltages 
d i f f e r  from the generator voltages except i n  the del ta-gap approximation. 
The r e l a t i o n  has the form: 

N 

The complex quant i  t i e s  S 
magnetic d isks)  (45). 
currents  and two sets of terminal voltages. 
r e l a t e d  t o  the p o r t  currents  I,,, by 

are determined v i a  Eqs. (41 ) and ( w i  t h  
TEs, the  w i re  antenna has one s e t  o f  terminal  

The p o r t  voltages vm are 

The open-c i r cu i t  p o r t  impedance mat r ix  zmn must be s y m e t r i c  i f  the  
media are  rec ip roca l .  The moment (o r  e x c i t a t i o n )  voltages are r e l a t e d  
t o  the moment cur ren ts  by 

N 

The open-c i r cu i t  moment impedance mat r i x  Z, need n o t  be symmetric. 
antenna theory and app l ica t ions ,  the p o r t  voltages and impedances are 
o f  bas ic  importance bu t  the moment voltages and impedances are use fu l  
on l y  as a means f o r  c a l c u l a t i n g  the p o r t  parameters. 
from Z, t o  Zmn i s  determined by Eq. (46). 

I f  the t e s t  sources were the same as the expansion modes, the 
moment voltages Vm and impedances Zmn would be the same as the p o r t  
voltages vm and impedances zmn. 

X. RADIATION EFFICIENCY 

I n  

The t ransformat ion 

I n  t h i s  sec t ion  the frequency i s  considered rea l .  That i s ,  s = j w  
and (L i s  rea l .  Furthermore, l e t  E and H denote the rms f i e l d  i n t e n s i t i e s .  
Both the w i re  and the surrounding-homog&eous medium may have f i n i t e  con- 
duc t i  v i  ti es. 

When the w i re  s t r u c t u r e  i s  exc i ted  as an antenna, the  time- 
average power i n p u t  i s  the sun o f  the powers de l i ve red  a t  the various 
por ts :  

N 
Pi = Real 1 vn 1; 

n= l  
(49 1 
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The time-average power dissipated i n  the wire antenna i s  

(50) Pd = Real (E x H*)*ds = RS j: da fls - 

where S denotes the closed surface of the wire, ds i s  directed inward 
on S,  and Rs i s  the surface resistance. The las t form in Eq. (50) i s  
a convenient approximation based on Eqs. ( 3 ) ,  (8) and (9) .  

current sources with radius slightly larger t h a n  t h a t  of the wire. 
The wire need n o t  have any gaps a t  the terminals. In calculating the 
power dissipated in the wire via Eq. (50), we integrate over the wire 
surface S and consider the magnetic sources bli t o  be outside S. 
time-average power radiated from the antenna t o  the exterior region i s  

I 

Suppose the voltage generators are modeled w i t h  tubular magnetic 

The 

where surface S' l i es  jus t  outside surface S so the magnetic sources 
-1 M. are i n  the interior region of S ' .  From Eqs. (49), (50) and (51) and 
Poyn ti ng '  s theorem, 

(52 1 Pi = Pd + Pr  . 
If the ambient medium has f in i te  conductivity, the "radiated 

power'' Pr i s  actually dissipated i n  the exterior region. 
efficiency may be defined as the ratio of the power radiated t o  the 
power input: 

The radiation 

(53) E, = Pr/Pi  

If Eq. (53) i s  employed, the antenna will have perfect efficiency unless 
i t  i s  constructed of dissipative media. 

An a1 ternative definition has been proposed by Tsao[l9] as follows. 
I t  i s  reasonable to consider a certain portion of the exterior-region 
dissipation t o  be a propagation phenomenon rather than intrinsically an 
antenna problem. 
the antena be defined as follows: 

Therefore, l e t  the time-average power radiated by 

= e2nr Real fl (5 x !*) - ds (54) p R  
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where y = ~1 + j s  and the integration covers a spherical surface with 
radius r centered a t  the antenna. W i t h  this definition, the radiated 
power i s  independent of the range r i n  the far-zone region. Now the 
radiation efficiency i s  defined by 

The definition i n  Eq. (55) penalizes the antenna n o t  only for power dis- 
sipated in the antenna structure b u t  also for excess near-zone losses. 
Thus, even a perfectly conducting antenna may have imperfect efficiency. 
Furthermore, two antennas (a small loop and a small dipole) may have the 
same distant fields (except for polarization) b u t  different near-zone 
fields. They will generally have different near-zone losses, i n p u t  
powers and radiation efficiencies according t o  Eq. (55). The antenna 
w i t h  higher efficiency wi 11 be preferred except perhaps in near-zone 
appl i cations . 
pagation losses in the medium will introduce an attenuation factor e-ar 
i n  the fields. This attenuation disappears i f  the medim i s  lossless. 
If the near-zone losses for a particular antenna exceed this amount, 
this antenna will have less t h a n  perfect efficiency. Similarly, i f  
the near-zone losses are smaller t h a n  the normal propagation losses, the 
antenna efficiency may exceed 100 per cent. 
with a large spherical antenna i f  the interior of the sphere i s  lossless 
and the range r in Eq. (54) i s  measured from the center of the sphere. 

Equations (54) and (55) are based on the idea t h a t  the normal pro- 

This situation may arise 

For a given antenna, the near-zone losses and attenuation generally 
increase as the conductivity of the medium i s  increased. 
however, the time-average power radiated P R  will increase with increasing 
conductivity of the medium. This occurs when the actual near-zone 
attenuation i s  a slowly varying function of the conductivity and i s  
over-compensated by the factor czar in Eq. (54) 

In some cases, 

For an antenna i n  a conducting medium, the directive gain i s  
defined as follows: 

- - ower density a t  the point (r,e,$) 
(56) Gd ') 
In the f a r  zone, the directive ga in  i s  independent of the range r and 

41T 1 E* 
(57) Gd = 'm 
where - F i s  defined by 
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The power ga in may be def ined as fo l lows [19]: 

(59) Gp(r.e,#) = 4 w 2  e2crr S(r,e,$)/Pi 

where Pi denotes the time-average power i n p u t  and S(r,e,#) i s  the  time- 
average power densi ty  a t  the observat ion po in t .  

X I .  FORWARD SCATTERING THEOREM 

L e t  a time-harmonic plane wave propagate through a homogeneous con- 
duct ing medium ( T J ~ , E ~ )  and i l l u m i n a t e  an inhomogeneous conducting t a r g e t  
(v,E). 
f i e l d  i n t e n s i t i e s .  

The frequency i s  considered rea l ,  and - E and - H denote the rms 

To s i m p l i f y  the discussion, l e t  the t a r g e t  and the medium have 
the same r e a l  permeab i l i t y  po. L e t  and €denote the complex permit-  
t i v i t y  o f  the medium and the target ,  respect ive ly .  
and 

sca t te red  f i e l d  and (E,H) the t o t a l  f i e l d .  
Maxwell's equations tc zemonstrate t h a t  the sca t te red  f i e l d  may be 
generated by the equ iva len t  e l e c t r i c  cur ren t  densi ty  

The parameters po 
should n o t  be confused w i t h  those o f  f r e e  space 

L e t  (Li9E-i) denote the i n c i d e n t  plane-wave f i e l d ,  (E H ) the 
I n  1953, R h o d s m ]  used 

r a d i a t i n g  i n  the ambient medium ( P ~ , E ~ ) .  Using the vec tor  p o t e n t i a l  and 
the "volume equivalence theorem" o f  Rhodes, we f i n d  the far-zone sca t te red  
f i e l d  as fo l lows:  

yhere y = j w &  , r' i s  a vector  from the o r i g i n  t o  the source-point, 
rs i s  a u n i t  vector  from the o r i g i n  toward the d i s t a n t  observat ion po in t ,  
and V denotes the vo lumetr ic  i n t e r i o r  reg ion o f  the target .  

L e t  P denote the " t o t a l  time-average power" def ined as fo l lows:  

C . .  

P = Real J J J v  J+q E* dv (62 1 -1 

I n  the forward-scat tgr ing s i t u a t i o n ,  the i n c i d e n t  plane wave t r a v e l s  
i n  the d i r e c t i o n  o f  rs and 
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E.  = E exp(- yr Ps) 
-1 -0 

(64) = jjj - e q  J exp[(-a + j s )  ts] dv. 

F r o m  Eq. (61 ) 

The i n t e g r a l s  i n  Eqs. (64) and (65) are i d e n t i c a l  except f o r  a minus 
sign. Therefore, we de f ine  a "modi f ied forward-scat tered f i e l d "  Em as 
i n  Eq. (65) b u t  w i t h  ~1 rep laced by (-a) i n  the integrand. Thus, 6 e  
t o t a l  time-average power i s  r e l a t e d  t o  the modified forward-scat tered 
f i e l d  as fo l lows:  

(66) P = Real j 4vr  eYr Em* E*] 
-s -0 

Equation (66) s ta tes  the forward s c a t t e r i n g  theorem f o r  a t a r g e t  i n  a 
homogeneous conducting medium. I f  the medium i s  loss less,  ~1 vanishes 
and sm can be replaced w i t h  5. 
the well-known theorem f o r  a t a r g e t  i n  a loss less  medium where P denotes 
the time-average power ex t rac ted  from the i n c i d e n t  plane wave. 
i s ,  P i s  the sum o f  the time-average power d iss ipa ted  i n  the t a r g e t  and 
the time-average power sca t te red  by the target .  

Thus, Eq. (66) reduces c o r r e c t l y  t o  

That 

Since E. = E - --s E Eq. (62) y i e l d s :  
-1 - 

P = - Real (69) S 

From Poynt ing 's  theorem, Eq. (69) seems reasonable as a d e f i n i t i o n  o f  
the time-average sca t te red  power. 
medium ( p o , ~ o )  w i t h  the i n c i d e n t  plane wave removed, J 
o f  the sca t te red  f i e l d .  

When r a d i a t i n g  i n  the homogeneous 
i s  the  source 

-eq 
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t From Eqs. (60) and (68), 

I where u and a0 denote the conductivities of the target and the medium, 
respectively. The f i r s t  integral in Eq.  (70) i s  clearly the time- 
average power dissipated in the target. 
easy t o  interpret, b u t  the integrand may be expanded as follows: 

I 

The l a s t  integral i s  not  so 
I 

I 

E * E *  = E..E* + E *E* + E . - E *  + E * E *  
-1 -1 +j s -1 s +j -1 (71 I -- 

From the l a s t  term i n  Eq. (70) and the f i r s t  two terms in Eq. (711, the 
time-average power budget must account for the power diss pated by the 
incident plane wave and the scattered f ie ld ,  respectively, in region V 
w i t h  homogeneous medium ( P ~ , E ~ ) .  No interpretation i s  offered for the 
l a s t  two terms i n  Eq. ( 71 ) ,  b u t  their  sum i s  real. 

The l a s t  term i n  Eq. (70) vanishes i f  the ambient medium i s  loss- 
less, and i t  may be negligible i f  the target conductivity greatly exceeds 
the conductivity of the medium. In these cases, the total power P i s  
simply the sum of the power dissipated i n  the target and the power 
scattered by the target. 

For a target i n  a conducting medium, the forward-scattering 
theorem does n o t  appear t o  be useful for experimental measurements 
because the modified scattered f ie ld  9 i s  n o t  available. 
is calculable, however, so the theorem may f i n d  application i n  the com- 
p u t a t i o n  of extinction cross sections. 

For a target i n  a homogeneous conducting medium, i t  i s  convenient 
t o  define the radar cross section (or echo area) as follows: 

This quantity 

2 2ar 
u = l imit  4 ~ r  e S,/Si 

lvco 
(72)  

where Ss and Si denote the time-average power densities i n  the scattered 
and inci dent f i  el ds, respectively. When echo-area data  are presented 
f o r  a specific target, i t  i s  necessary t o  specify the location of the 
p o i n t  i n  space where Si i s  evaluated and from which the range r i s  
measured. Equation (72) reduces t o  the standard definition for a target 
i n  a lossless me ium as the attenuation constant ~ r .  tends t o  zero. W i t h -  
ou t  the factor ,jar, the echo area would vanish for every f in i te  target 
in a conducting medium. 
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The factor e2ar i n  Eq. (72)  compensates for the normal attenuation 
of the outward-traveling scattered wave. Because of this factor, a low- 
loss dielectric sphere may have a large echo area when immersed in a 
conducting medium. 
sphere, Eq. (72)  allows for attenuation starting from the center whereas 
the actual attenuation begins a t  the surface of the target. For a given 
target, the near-zone losses in the scattered field will generally in- 
crease as the conductivity of the medium i s  increased. 
the near-zone attenuation will increase more slowly than the "normal 
rate", the exponential factor in Eq.  (72)  will overcompensate, and the 
echo area will increase w i t h  increasing conductivity of the medium. 
This phenomenon i s  closely related t o  t h a t  previously discussed for the 
radiation efficiency as defined in Eq. (55). 

If the range r i s  measured from the center of the 

In some cases 

The absorption cross section i s  defined by the ratio of the time- 

The scattering cross section 
average power absorbed (dissipated) in the target and the time-average 
power density of the incident plane wave. 
i s  the ratio of the time-average power scattered and the time-average 
power density o f  the incident wave. 
sum of the absorption and scattering cross sections. 
power i s  defined by Eq.  (69), these cross-section definitions are suitable 
even for a target in a conducting mediun. 

wire structure w i t h  conductivity much greater than t h a t  of the ambient 
medi um. 
I ( a )  induced on the wire by an incident plane wave. 
distribution may be induced by a se t  of equivalent port-voltage generators 
V n  inserted a t  the various ports along the wire, and these voltages are 
readily calculated. 
wire system as defined by Eq. (49). 
o f  the power dissipated in the wire and  the power radiated or scattered 
from the wire. 
and the power i n p u t  from Eq. (49). 
obtained from Pi - Pd. 
obtain the absorption, scattering and extinction cross sections. 

The extinction cross section i s  the 
If the scattered 

Now l e t  us consider briefly the scattering problem for a t h i n -  

Suppose we have a1 ready cal culated the current distribution 
The same current 

Let P i  denote the time-average power input t o  the 
This power input must be the sum 

The power dissipated i s  readily calculated via Eq.  (50), 

Dividing by the incident power density, we 
Finally, the scattered power i s  

XII. NUMERICAL RESULTS 

In comparison w i t h  antennas and scatterers in free space, relatively 
l i t t l e  da ta  are available for structures in a conducting medium. 
fore, i t  i s  not  necessary o r  desirable t o  choose a complicated configu- 
ration t o  i l lus t ra te  trends. Figure 3 i l lust rates  the backscatter echo 
area of a perfectly conducting s t ra i  g h t  wi re for broadsi de incidence with 
Eq. (72) .  For defining the range r and the incident power density S i ,  
the coordinate origin i s  located a t  the center of the wire. 
highest frequency (100 M H z ) ,  the wire length i s  approximately equal t o  
the wavelength in the ambient medium. 
increases, the echo area decreases a t  f i r s t  and then increases. 

There- 

A t  the 

As the conductivity of the medium 
This i s  
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n o t  surprising, i n  v,ew of  the discussion following Eq. (72). 
reasonable that the highly resonant properties of the thin straight wire 
should decrease and finally disappear. All the numerical results pre- 
sented i n  this section were calculated w i t h  the sinusoidal reaction 
technique. For these calculations, the wire was divided i n t o  a number 
J of  segments where J = 6 o r  

I t  seems 

(73) J = 3.2 lyhl  

(whichever i s  larger) where h denotes the half-length of the w i r e .  
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Fig. 3. Broadside backscatter for uninsul ated perfectly-conducting 
straight wire i n  homogeneous medi um w i t h  conductivity o 
in mhos/m. 
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FREQUENCY ( MHz ) 

Fig. 4. Radiation efficiency of uninsulated perfectly-conducting 
center-fed linear dipole in a homogeneous medium with 
conductivity 0 in mhos/m. 

Figure 4 i l lustrates  the radiation efficiency of a perfectly-con- 
ducting center-fed linear dipole as defined by Eq.  (55). 
power was calculated via Eq.  (54) by integrating the power density over 
a far-zone sphere. 
coordinate origin for measuring the range r. 
from the terminal current and voltage. The low efficiency observed i n  
the low-frequency range i s  attributed t o  the excess near-zone losses 
of the short uninsulated dipole. 
increases, the efficiency decreases a t  f i r s t  and then increases. This 
i s  n o t  surprising in view of the discussion following E q .  (55). 

The radiated 

Again, the center of the wire was selected as the 
The power input was obtained 

As the conductivity of the medium 
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Figures 5 and 6 show the resistance and reactance of the center- 

Before we introduce the next figure, i t  i s  necessary t o  define some 

fed l inear dipole mentioned above. 

terms. In c o m n  language, a t r i p o d  i s  a figure w i t h  three straight legs 
intersecting a t  a c o m n  junction. Thus,  i t  is  reasonable to  define a 
quadripod as a figure w i t h  four straight legs (or  arms) intersecting a t  a 
c o m n  junction, By analogy w i t h  the regular tetrahedron o r  a regular 
polygon, the regular quadripod has four arms and each arm has the same 
length h.  
each of the other arms. 

Furthermore, each arm makes the same angle of 109.5 degrees with 
The regular quadripod i s  a nonplanar structure. 

Figure 7 i l lus t ra tes  five poles of  the admittance of a perfectly- 
conducting regular quadripod, plotted on the complex rh plane. 
poles are invariant with respect t o  the location of the terminals on 
the thin-wire structure, although some of the poles will n o t  be observed 
if  the terminals are located a t  the junction. 
are also the poles of the scattering function for near-zone or far-zone 
scattering, and they are independent of the incidence direction. 

These 

These admittance poles 

For a perfectly conducting structure, scaling theory indicates 
that  the poles may be presented without specifying the frequency o r  the 
parameters of the ambient medium. The fundamental quantity vh  i s  
dimensionless, and i t  does n o t  matter whether the complex values of y 
result  from a complex ambient medium or  the choice of a complex frequency. 
Thus,  Fig. 7 may be interpreted as the complex frequency plane o r  the 
complex medium plane, b u t  the range o f  validity i s  more general than 
either. Some of the quadripod poles i n  Fig.  7 are the same as those 
of a simple bent w i r e  (the V antenna) w i t h  an angle of 109.5 degrees. 

For an imperfectly conducting target, scaling i s  much more 
restrictive.  
imnersed in sea water. 
frequency plane, and i t  would be necessary t o  specify the ambient 

have experimental o r  theoretical data f o r  the complex permittivity of 
both media a t  complex frequencies. 

For example, one m i g h t  plot  the poles of a copper wire 

In calculating these poles, one must 

These poles m i g h t  be plotted on the complex 

medium and the target medium. 

Figures 8 and 9 show the radiation efficiency of a dipole and 
a loop i n  free space as a function of the wire conductivity. 
Figs. 10 and 11 i l lus t ra te  the conductance and susceptance of bare 
and insulated dipoles i n  free space. 

Finally, 

Although experimental confirmation is n o t  available for the 
numerical results presented here, the examples concern antennas and 
scatterers with simple shapes to  encourage others t o  compare with their  
calculations or  measurements. The numerical results were obtained w i t h  
a computer program that has been tested extensively w i t h  many antennas 
and targets in free space. Pole plots obtained w i t h  this program show 
excellent agreement w i t h  those of  Tesche[21] for a straight wire. The 
program has been employed t o  analyze the transmission of short pulses 
between coupled bow-tie antennas buried i n  the earth, w i t h  excellent 
experimental verification. For a l inear dipole imnersed i n  a s a l t  
water solution, our  admittance and impedance calculations show close 
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Fig. 7. Calculated poles of the admittance of a perfectly-conducting 
regular quadripod, plotted on the complex yh plane. 

agreement with measurements by Iizuka and King[22] and Siege1 and 
King[23] when ya i s  less t h a n  0.07 and the dipole length exceeds the 
wire diameter by a factor of a t  least 30. This just i f ies  confidence 
in the formulation, the computer program and the numerical results. 
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Fig. 8. Radiat ion e f f i c i e n c y  o f  center- fed d ipo le  i n  f r e e  space. 
The parameter i s  the c o n d u c t i v i t y  i n  mhos p e r  meter. 
Wire diameter: 1/16 i n c h  so l id .  
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Wire diameter: 1/16 inch solid. 

30 



18 

16 

I 14 
L 

n 

v) 

- 
J 12 - 
I 

I O  a 
W 
0 
z 8  a 
I- o 
2 6  
0 z 
0 
0 4  

Y 

2 

0 

I I I I I I I I I 1 
D I E L  ECTR I C  

- -COATED 
DIPOLE 

- BARE 
0. 

DIPOLE 

WIRE DIAMETER: d =  $hob 
OUTER DIA. OF DIELECTRIC 
SHELL: D = 2 d  
PERMITTIVITY OF SHELL 

I Of 
' \'\ 

0 0.2 0.4 0.6 0.8 1.0 
LENGTH L/X 

Fig. 10. Conductance o f  per fec t l y -conduct ing  center- fed d ipo le  
i n  f r e e  space. 

31 



12 

10 

1 8  

a 
u) 
0 

3i 

- J 6  A 

I 
4 m 

0 2  

a 0  

3 -2 

-4 

- 
I 

Y 

w 
z s 
w 
0 
u) 

u) 

I I I I I I I I I 

DIELECTRIC WIRE DIAMETER: d s  L/IOO - 
OUTER D I A .  OF D I E L E C T R I ~  

- BARE - I 1 PERMITTIVITY OF SHELL 

- 

- 

- 

- 

- - 

- - 

-6 

LENGTH L/x 

Fig. 11. Susceptance o f  perfectly-conducting center-fed dipole 
i n  free space. 

32 



XI I I. SUMMARY 

Rumsey's reac t i on  i n t e g r a l  equation i s  discussed, and i t  i s  po in ted  
o u t  t h a t  i t  i s  more general than the e l e c t r i c  f i e l d  i n t e g r a l  equation 
o r  the magnetic f i e l d  i n t e g r a l  equation. The forward s c a t t e r i n g  theorem 
i s  developed f o r  an a r b i t r a r y  t a r g e t  i n  homogeneous conducting medium. 

The s inusoida l  reac t i on  formulat ion i s  presented f o r  an a r b i t r a r y  
th in -w i re  s t r u c t u r e  i n  a conducting medium. 
f i n i t e  conduc t i v i t y  and lumped loading, and some po r t i ons  o f  the w i re  
may be i nsu la ted  and others bare. 
r e a l  o r  complex frequency domain, and i t  covers both the antenna and 
the s c a t t e r i n g  s i t ua t i ons .  A fundamental d i s t i n c t i o n  i s  i n d i c a t e d  
between the moment voltages and impedances and the  m u l t i p o r t  voltages 
and impedances. 

The w i re  s t r u c t u r e  may have 

The ana lys is  i s  performed i n  the 

Numerical resu l  t s  are i n c l  uded t o  i 11 us t ra te  the backscat te r ing  
p roper t i es  o f  a s t r a i g h t  w i re  as a func t i on  o f  the  frequency and the 
conducti  v i  t y  o f  t he  medi um. S i  m i  1 a r  graphs i 11 u s t r a t e  the  r a d i  a t i  on 
e f f i c i e n c y  and impedance o f  a center- fed l i n e a r  d ipo le.  Several poles 
are p l o t t e d  on the  complex yh plane f o r  the  admittance func t i on  o f  a 
" regu la r  quadripod". 
f i e l d s  o f  a s inuso ida l  e l e c t r i c  monopole i n  a conducting medium. 

Appendices present  the near-zone and far-zone 
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APPENDIX I 
NEAR-ZONE FIELD OF SINUSOIDAL LINE SOURCE 

Consider an e l e c t r i c  l i n e  source l oca ted  on the z ax i s  w i t h  end- 
po in ts  a t  z1 and z2 as shown i n  Fig.12. Two o f  these "monopoles" can 
be arranged t o  form a V dipole.  
because i t  i s  employed as the t e s t  source i n  the s inusoida l  reac t ion  
technqi ue f o r  th in-wi  re st ructures.  

The f i lamentary  V d ipo le  i s  o f  i n t e r e s t  

Fig. 12. An e l e c t r i c  l i n e  source on the z ax is  and the observat ion 
p o i n t  a t  (p,z). 

L e t  the e l e c t r i c  monopole have the  f o l l o w i n g  cu r ren t  d i s t r i b u t i o n :  

Il sinh y(z2 - z) + I2 s inh  y ( ~  - zl) I ( z )  = s inh  yd  (74) 

where I 1  and I 2  are the endpoint currents, y i s  the complex propagation 
constant  o f  the medium, d = z2 - z1 i s  the source length  and the t i m e  
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dependence est i s  understood. 
w i t h  complex parameters u and E. 

are E = 0 and 

The medium i s  considered t o  be homogeneous 
The cylindrical components of the f i e l d  

4 

- Y R 1  
+ ( I1  cosh yd - 12) e 

+ ( I 2  cosh yd-I1)  e 

cos el  

cose2] 
'YR2 

L e [ ( I ,  - I2 cash y d )  - n 
4~ sinh yd R2 

EZ = 

'Y R1 

R1 
+ (I2 - I l  cash y d )  e ] 

A -YR1 
H =  4 - 41~p sinh yd [ ( I ,  cosel sinh yd + I l  cosh yd - 12) e (77) 

- Y R 2  - ( I 2  cose2 sinh yd - I2 cosh yd + 11) e ] 

where n i s  the in t r in s i c  impedance of the medium: 

These expressions excl ude the fie1 d contributions from the p o i n t  charges 
a t  the endpoints of the l ine  source, since these charges disappear when 
two monopoles are connected t o  form a dipole. For a V dipole, scalar  
addition applies t o  the Cartesian components ( E  E ,EZ) o f  the f i e l d  x' Y generated by each o f  the monopoles. 
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APPENDIX I1 
FAR-ZONE FIELD OF SINUSOIDAL L I N E  SOURCE 

Consider an e lectr ic  line source with lendth d and endpoints a t  
(x lyyl ,z l )  and (x2,yzyz2) .  
are 

The coordinates of any p o i n t  on the source 

x = x  f R C O S a  1 (79) 

where cos a ,  cos 6 and cos y are the direction cosines o f  the R axis, 
and a i s  the distance along the source measured from the endpoint ( x l ,  
yl,zl). Let the current distribution on the monopole be 

I1 sinhy ( d  - a )  + I2 sinh y~ 
sinh yd (82 1 I ( , )  = 

where I1 and I2 are the endpoint currents. 
source i s  

The far-zone f ie ld  o f  this 

(83) E, = (cosa cose cos+ - cos6 cos8 sin+ - cosy sine) E, 

E = (-cos& sin+ + cos@ cos$) E, + (84) 

where 

y 1 
[(eYgd - g sinh yd - cosh yd)  I1 e 

+ (eeygd + g sinh yd - cosh y d )  I2 e 

q e-yr 
2 4rr (1-g ) sinh yd 

(85) E =  

f,  = x sine cos+ + y1 sine sin+ + z1 cos8 1 
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(87) f2  = x2 sine cos+ + y2 sine sin+ 

(88) g =  COS^ sine cos+ + cos6 sine s 

+ z2 cose 

n+ + cosy cose 

and ( r y e , + )  are the spherical coordinates 
Although y denotes the propagation constant and cos y i s  a direction 
cosine, no confusion should arise. 

f the observation p o i n t .  

For a sinusoidal V dipole, each monopole has different direction 
+ cosines b u t  scalar addition applies t o  the field components E, and E 

of each monopole. 
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